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Abstract
We establish a link between the two functional approaches: a mesoscopic field
theory developed recently by Ciach and Stell (2000 J. Mol. Liq. 87 253) for the
study of ionic models and an exact statistical field theory based on the method
of collective variables.

PACS numbers: 05.20.−y, 05.70.Ce

Two rigorous scalar field theories were recently developed to describe the phase equilibria
in ionic fluids: the KSSHE (Kac–Siegert–Stratonovich–Hubbard–Edwards) theory [1] and
the approach [2, 3] which is based on the collective variable (CV) method [4, 5]. As was
shown recently [3, 6] both theories are in close relation. Our goal here is to establish a
link between the CV approach and the mesoscopic field theory developed in [7, 8] for the
restricted primitive model with additional short-range interactions presented (RPM + SR) or,
more specifically, to demonstrate how after some approximations in the exact microscopic CV
action H[να, ρ,Q,ω, γ ] we can arrive at the functional of the grand potential ��MF[η, φ]
considered in [7, 8].

Let us consider a general case of a classical two-component system consisting of N
particles among which there exist N1 particles of species 1 and N2 particles of species 2. The
pair interaction potential is assumed to be of the following form:

Uαβ(r) = vHS
αβ (r) + vC

αβ(r) + vSR
αβ (r), (1)

where vHS
αβ (r) is the interaction potential between the two additive hard spheres of diameters

σαα and σββ . We call the two-component hard sphere system a reference system (RS).
Thermodynamic and structural properties of RS are assumed to be known. vC

αβ(r) is the
Coulomb potential: vC

αβ(r) = qαqβvC(r), where vC(r) = 1/(Dr),D is the dielectric constant,
hereafter we put D = 1. The solution is made of both positive and negative ions so that the
electroneutrality is satisfied,

∑2
α=1 qαcα = 0, and cα is the concentration of the species α,
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cα = Nα/N . The ions of the species α = 1 are characterized by their hard sphere diameter
σ11 and their electrostatic charge +q0 and those of species α = 2, characterized by diameter
σ22, bear opposite charge −zq0 (q0 is elementary charge and z is the parameter of charge
asymmetry). vSR

αβ (r) is the potential of the short-range interaction: vSR
αβ (r) = vR

αβ(r) + vA
αβ(r),

where vR
αβ(r) is used to mimic the soft core asymmetric repulsive interaction, vR

αβ(r) is assumed
to have a Fourier transform; vA

αβ(r) describes a van der Waals-like attraction.
We consider the grand partition function (GPF) of the system which can be written as

follows:

�[να] =
∑
N1�0

∑
N2�0

∏
α=1,2

exp(ναNα)

Nα!

∫
(d
) exp

−β

2

∑
αβ

∑
ij

Uαβ(rij )

 . (2)

Here the following notations are used: να is the dimensionless chemical potential, να =
βµα − 3 ln �,µα is the chemical potential of the αth species, β is the reciprocal temperature,
�−1 = (2πmαβ−1/h2)1/2 is the inverse de Broglie thermal wavelength and (d
) is the element
of configurational space of the particles.

Let us introduce operators ρ̂k and Q̂k: ρ̂k = ∑
α ρ̂k,α and Q̂k = ∑

α qαρ̂k,α , which are
combinations of the Fourier transforms of the microscopic number density of the species α:
ρ̂k,α = ∑

i exp
(−ikrα

i

)
. In this case a part of the Boltzmann factor in (2) which does not

include the RS interaction can be presented as follows:

exp

−β

2

∑
αβ

∑
i,j

(
Uαβ(rij ) − vHS

αβ (rij )
) = exp

[
−1

2

∑
k

(�̃NN ρ̂kρ̂−k

+ �̃QQQ̂kQ̂−k + 2�̃NQρ̂kQ̂−k) +
1

2

∑
α

Nα

∑
k

(
�̃SR

αα(k) + q2
α�̃C(k)

)]
, (3)

where

�̃NN(k) = 1

(1 + z)2

[
z2�̃SR

11 (k) + 2z�̃SR
12 (k) + �̃SR

22 (k)
]
,

�̃QQ(k) = 1

(1 + z)2

[
�̃SR

11 (k) − 2�̃SR
12 (k) + �̃SR

22 (k)
]

+ �̃C(k),

�̃NQ(k) = 1

(1 + z)2

[
z�̃SR

11 (k) + (1 − z)�̃SR
12 (k) − �̃SR

22 (k)
] (4)

and we use the notations �̃X...
αβ (k) = β

V
ṽX...

αβ (k) with ṽX...
αβ (k) being a Fourier transform of the

corresponding interaction potential.
In order to introduce the collective variables (CVs) we use the identity

exp

[
−1

2

∑
k

�̃(k)ξ̂kξ̂−k

]
=

∫
(dξ)δF [ξ − ξ̂ ] exp

[
−1

2

∑
k

�̃(k)ξkξ−k

]
, (5)

where δF [ξ − ξ̂ ] denotes the functional delta function.
Taking into account (3)–(5), we can rewrite (2)

�[να] =
∫

(dρ)(dQ)(dω)(dγ ) exp(−H[να, ρ,Q,ω, γ ]), (6)

where the CV action H is as follows:

H[να, ρ,Q,ω, γ ] = 1

2

∑
k

[�̃NN(k)ρkρ−k + �̃QQ(k)QkQ−k + 2�̃NQ(k)ρkQ−k]

− i
∑

k

(ωkρk + γkQk) − ln �HS[ν̄α;−iω,−iqαγ ]. (7)
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In (7) CVs ρk and Qk describe fluctuations of the total number density and charge density,
respectively. �HS[ν̄α;−iω,−iqαγ ] is the GPF of a two-component system of hard spheres
with the renormalized local chemical potential

ν̄α = να +
1

2

∑
k

�̃SR
αα(k) +

q2
α

2

∑
k

�̃C(k) − iω(r) − iqαγ (r). (8)

In the above integral (d . . .) is a volume element of the corresponding CV phase space, e.g.
(dρ) = dρ0

∏′
k �=0 d Re ρk d Im ρk, the prime means that the product over k is performed in the

upper semi-space (ρ−k = ρ�
k).

The MF approximation of functional (6) is defined by

�MF[να] = exp(−H[να, ρ̄, Q̄, ω̄, γ̄ ]), (9)

where ρ̄, Q̄, ω̄ and γ̄ are the solutions of the saddle point equations:

ρ̄ = 〈N [ν̄α;−iω̄,−iqαγ̄ ]〉HS, Q̄ = 0,

ω̄ = −iρ̄�̃NN(0), γ̄ = −iρ̄�̃NQ(0).
(10)

Now we present CVs ρk and Qk (ωk and γk) as

ρk = ρ̄δk + δρk, Qk = Q̄δk + δQk,

ωk = ω̄δk + δωk, γk = γ̄ δk + δγk,

where the quantaties with a bar are given by (10) and δk is the Kronecker symbol. Then we
write ln �HS[ν̄α;−iω,−iqαγ ] in the form of the cumulant expansion

ln �HS[. . .] =
∑
n�0

(−i)n

n!

∑
in�0

∑
k1,...,kn

M(in)
n (k1, . . . , kn)δγk1 . . . δγkin

δωkin+1
. . . δωkn

δk1+···+kn
,

(11)

where M(in)
n (k1, . . . , kn) is the nth cumulant defined by

M(in)
n (k1, . . . , kn) = ∂n ln �HS[. . .]

∂δγk1 . . . ∂δγkin
∂δωkin+1

. . . ∂δωkn

∣∣∣∣
δγk=0,δωk=0

. (12)

The expressions for the cumulants (for n � 4) are given in [3]. Substituting (11), (12) in (6),
(7) we obtain

�[να] = �MF[ν̄α]
∫

(dδρ)(dδQ)(dδω)(dδγ ) exp

{
− 1

2!

∑
k

[�̃NN(k)δρkδρ−k

+ 2�̃NQ(k)δρkδQ−k + �̃QQ(k)δQkδQ−k] + i
∑

k

(δωkδρk + δγkδQk)

+
∑
n�2

(−i)n

n!

∑
in�0

∑
k1,...,kn

M(in)
n (k1, . . . , kn)δγk1 . . . δγkin

δωkin+1
. . . δωkn

× δk1+···+kn

}
. (13)

Let us make the following approximations. We neglect the k dependence of the cumulants
putting M(in)

n (k1, . . . , kn) � M(in)
n (0, . . . , 0) and replace the full chemical potentials να by

their MF values ν∗
α . We also limit our consideration to the restricted primitive model (z = 1)
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supplemented by the same short-range interactions for both species (RPM + SR)
(
vSR

11 (r) =
vSR

22 (r) = vSR
12 (r) = vSR(r)

)
. The latter means that �̃NN(k) = �̃SR(k), �̃NQ(k) = 0 and

�̃QQ(k) = �̃C(k). In this case we have for the cumulants [2]

M(0)
n = G̃n, M(2)

n = q2
0G̃n−1, M(3)

n ≡ 0, M(4)
n = q4

0 (3G̃n−2 − 2G̃n−3),

(14)

where G̃n = G̃n(0, . . . , 0) is the Fourier transform of the n-particle truncated (connected)
correlation function [9] of a one-component hard sphere system with the density ρ̄ defined
by (10). Because both M

(0)
2 and M

(2)
2 are positive and smooth functions in the region under

consideration [2], we can integrate in (13) over δωk and δγk with the Gaussian density measure
as basic one. The integration is performed using the Euler equations. We determine δω∗

k and
δγ ∗

k which provide a maximum for the functional in the exponent of (13). This leads to the
expression for �

� = �MFC
∫

(dδρ)(dδQ) exp(−H̃(δρ, δQ)), (15)

where

H̃(δρ, δQ) = 1

2

∑
k

[
a

(0)
2 (k)δρkδρ−k + a

(2)
2 (k)δQkδQ−k

]
+

∑
n�3

1

n!

∑
in�0

∑
k1,...,kn

a(in)
n δQk1 . . . δQkin

δρkin+1
. . . δρkn

δk1+···+kn
. (16)

and the following notations are introduced

C =
∏

k

1

πM
(0)
2

∏
k

1

πM
(2)
2

,

a
(0)
2 (k) = �̃SR(k) + 1

/
M

(0)
2 , a

(2)
2 (k) = �̃C(k) + 1

/
M

(2)
2 , (17)

a
(0)
3 = −M

(0)
3

/(
M

(0)
2

)3
, a

(2)
3 = − 3M

(2)
3

M
(0)
2

(
M

(0)
2

)2 , (18)

a
(0)
4 = − 1(

M
(0)
2

)4

[
M

(0)
4 − 3

(
M

(0)
3

)2

M
(0)
2

]
, a

(2)
4 = 12

(
M

(2)
3

)2(
M

(0)
2

)2(
M

(2)
2

)3 , (19)

a
(4)
4 = − 1(

M
(2)
2

)4

[
M

(4)
4 − 3

(
M

(2)
3

)2

M
(0)
2

]
. (20)

Taking into account (14) we rewrite (16)–(20) as follows:

� = �MFC′
∫

(dδρ) (dδQ∗) exp(−H̃(δρ, δQ∗)), (21)

where

H̃(δρ, δQ∗) = 1

2V

∑
k

[̃
a

(0)
2 (k)δρkδρ−k + ã

(2)
2 (k)δQ∗

kδQ
∗
−k

]
+

∑
n�3

1

n!

1

V n−1

∑
in�0

∑
k1,...,kn

ã(in)
n δQ∗

k1
. . . δQ∗

kin
δρkin+1

. . . δρkn
δk1+···+kn

. (22)



Letter to the Editor L587

Here

ã
(0)
2 (k) = βṽSR(k) +

1

ρ̄S̃2
, ã

(2)
2 (k) = βṽC(k) +

1

ρ̄
,

ã
(0)
3 = − S̃3

ρ̄2S̃3
2

, ã
(2)
3 = − 3

ρ̄2
,

ã
(0)
4 = − 1

ρ̄S̃4
2

(
S̃4 − 3

S̃2
3

S̃2

)
, ã

(2)
4 = 12

ρ̄3
, ã

(4)
4 = 2

ρ̄3

with δQ∗
k = δQk/q0 and S̃n = G̃n/〈N〉.

After taking into account 1
V

∑
k = (2π)−3

∫
dk and δk1+···+kn

= 1
V

∫
dr exp ir(k1+· · ·+kn)

in (22) we arrive at the same expression for the action as that obtained in the mesoscopic field
theory (see, e.g., equations (44)–(48) in [8]), ��MF[η̃, φ̃] with η̃(k) = δρk and φ̃(k) = δQ∗

k.
In order to demonstrate that corresponding coefficients of both actions coincide i.e.,

ã
(0)
2 (k) = C̃(0)

ηη (k) = βṽSR(k) + γ0,2, (23)

ã
(2)
2 (k) = C̃

(0)
φφ (k) = βṽC(k) + γ2,0, (24)

ã
(0)
3 = γ0,3, ã

(2)
3 = 3γ2,1, ã

(0)
4 = γ0,4, ã

(2)
4 = 6γ2,2, ã

(4)
4 = γ4,0 (25)

(C̃(0)
ηη (k), C̃

(0)
φφ (k) and γ2m,n are the notations used in [8]), we consider coefficients γ2m,n in

detail. To this end we recall that γ2m,n denotes the appropriate derivative of the Helmholtz free
energy of the hard sphere system fh (see e.g.[8])

γ2m,n = β
∂2m+nfh

∂φ2m∂ρ∗n

∣∣∣∣
φ=0,ρ∗=ρ̄∗

.

For example, when the Carnahan–Starling (CS) form of fh is adobted in the local-density
approximation

βfh(ρ
∗, φ) = ρ∗ + φ

2
log

(
ρ∗ + φ

2

)
+

ρ∗ − φ

2
log

(
ρ∗ − φ

2

)
− ρ∗ + ρ∗ s(4 − 3s)

(1 − s)2
,

we obtain the following explicit expressions for γ2m,n:

γ0,2 = 1 + 4s + 4s2 − 4s3 + s4

(1 − s)4ρ̄∗ = 1

ρ̄∗S̃2
, γ2,0 = 1

ρ̄∗ (26)

γ0,3 = −1 − 5s − 20s2 − 4s3 + 5s4 − s5

ρ̄∗2(1 − s)5
= − S̃3

ρ̄∗2S̃3
2

, γ2,1 = − 1

ρ̄∗2
, (27)

γ0,4 = −2(1 − 6s + 15s2 + 52s3 + 3s4 − 6s5 + s6)

ρ̄∗3(1 − s)6
= − 1

ρ̄∗3S̃4
2

(
S̃4 − 3

S̃2
3

S̃2

)
, (28)

γ2,2 = 2

ρ̄∗3
, γ4,4 = 2

ρ̄∗3
. (29)

In the above equations we use the notations ρ∗ = ρ̄∗ + δρ∗ and s = πρ∗/6 (ρ∗ = ρσ 3 and
ρ̄∗ are the dimensionless total number density and its MF value, respectively). As is seen,
expressions (26)–(29) confirm the relations given by (23)–(25).
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